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Abstract--Temperature measurements made in an annular, sodium filled enclosure heated at the inner wall 
or the roof boundary and cooled at the floor are reported. The dimensionless temperature profile of the 
bulk fluid in response to uniform wall heating is described by an empirical formula, which is the Fourier 
linear conduction equation with an additional simple function accounting for convection. The formula is 
subsequently shown to be a solution of the one-dimensional steady-state conduction equation involving 
energy generation in the medium. The analytical approach enables the convection and conduction heat 
transfer modes in the bulk fluid to be isolated and hence, the convection currents to be quantified. Copyright 

© 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

The study of  natural convection in enclosures con- 
taining a liquid metal has been researched in the 
nuclear industry in recent years to provide design data 
for liquid metal cooled fast breeder reactors 
(LMFBR's) .  

This paper reports some experimental observations 
and analysis made in sodium on the enclosure rep- 
resenting the intermediate plenum of  a U K  Design of  
L M F B R .  This is an annular space around the reactor 
core filled with sodium. Its intention is to hold a stag- 
nant stratified sodium layer and to limit the tem- 
perature gradient between the hot  pool above and the 
cooler sodium pool below. Since one boundary is a 
vertical wall adjacent to the reactor core, then heat 
on this wall could cause naturally convected sodium 
movement  which may destroy the stratification in the 
bulk sodium. This might create unacceptable tem- 
perature gradients. Concerns about  the influence of  
this heated vertical wall were the main drivers for the 
test work. 

Work on this subject has been published previously 
which gives fuller descriptions of  the plenum and also 
include results made in earlier test rigs using initially 
water and later mercury as the simulant reactor fluid 

[1, 21. 
The purpose of  this paper is to report the sodium 

experimental results and to introduce the empirical 
and analytically derived formulae that enable the ste- 
ady-state temperature distribution and the fluid flow 
within the enclosure to be predicted. The formulae 
could be used in simple geometries and possibly 
extended to more complex shapes and other fluids. 
The structural design of  such enclosures can then pro- 
ceed with more confidence. 
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2. THE TEST FACILITY 

Figure 1 schematically illustrates the test vessel 
which models the intermediate plenum. The pre- 
liminary data for this design were obtained from a 
simple rectangular tank filled with mercury [2]. The 
data provided a useful comparison with these results 
and are reported later. 

The test section was large, being nearly 1 m high 
and forming an annulus between a central column 
(600 mm diameter) and the outer cylinder (1800 mm 
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Fig. 1. Schematic arrangement of the test vessel. 
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NOMENCLATURE 

A area [m:] 
CL2 integration constants 
C o specific heat [J kg ~ K ~] 
9,, constant energy generation [W m 3] 
k thermal conductivity [W m ~ K t] 
t7 heat transfer coefficient [W m 2 K t] 
H height of heated wall [m] 
H' height of heated wall to the roof 

boundary condition [m] 
H0 height of uniformly heated wall with 

an adiabatic top boundary i.e. 

reference height [m] 
(H) dimensionless temperature 

T-T~ 

r h -  T~. 
m' mass flow [kg s ~] 
Pe Peclet number 
Q total heat flow [W] 
Q~ conduction heat [W] 
Qc, convection heat [W] 

Q, roof heat [W] 
Q~ total heat [W] 
Qw wall heat [W] 
R heat ratio 
T local temperature [K] 
7~, hottest temperature [K] 
T~ floor or sink temperature [K] 
T, temperature at infinity, equal to T~ [K] 
7"* dimensionless temperature 

kA 
- Q H  ( T -  T~) 

U downward convection velocity in the 
bulk fluid [m s t] 

_- local height [m] 
z* dimensionless height parameter [z/Ho]. 

Greek symbols 
k 

thermal diffusivity = p-Cp [m2 s ~] 

p density [kg m 3]. 

diameter). When full the vessel contained approxi- 
mately two tonnes of sodium. The central column or 
inner wall simulated the reactor core as the prime 
source of heat. This heat source was divided into 10 
equal horizontal zones by 10 band heaters mounted 
behind the wall of the central column and inde- 
pendently powered and controlled. These 10 zones 
provided flexibility in the heat pattern applied to the 
wall, which could be varied from constant heat flux 
to cases of nonuniform flux. 

The floor plate was cooled from below using 
sodium, which circulated within a labyrinth designed 
specifically to provide a uniform floor temperature 
(i.e. simulating the cold pool boundary). 

The level of sodium in the annular section could be 
adjusted in increments to correspond with the sub- 
mergence of a number of heater zones. In some tests 
the top boundary was a free surface to an argon gas 
cover blanket which formed an adiabatic thermal 
boundary. As the level of sodium was raised further 
it covered an internal baffle and flooded the region 
around the roof coil. The top could then be heated 
from a stream of sodium in the coil and the test con- 
ditions changed to those involving a heated roof (i.e. 
simulating the hot pool boundary). 

The outer vertical wall of the vessel was guard 
heated for all tests and represented an adiabatic ther- 
mal boundary. 

The temperature monitoring instrumentation con- 
sisted of fixed positions of thermocouples mounted as 
indicated in Fig. 2. 

• Six equally spaced columns for bulk sodium 
measurements positioned to have an equal volume 

of sodium either side to the walls (i.e. the pool 
tree thermocouples) ; 

• three columns for wall temperature data on both 
the inner and outer vessel walls ; 

• combs protruding horizontally from the inner 
wall at a quarter height (236 mm) and three-quar- 
ter height (700 mm) above the floor plate to give 
data on the thermal boundary region. These were 
placed at 5 mm intervals to a distance of 60 mm 
from the wall and are based on measurements 
made and reported in ref. [3]. 

Input heat was measured as the electrical power 
applied to the column heaters, and output heat from 
a calculation using the measured temperature differ- 
ential across the floor plate. The thermocouples and 
heat fluxes through the floor plate were initially cali- 
brated in a series of stable linear conduction tests 
where heat was introduced via the roof coil and 
removed at the floor. Careful calculations of heat bal- 
ances ensured that the main heat flows were quant- 
ified. 

The stabilization period before taking the steady- 
state temperature data was generally 24 h. 

3. RESULTS OF EXPERIMENTS 

3.1. Main tests. Uniform wall heat flux applied to the 
central column, adiabatic rooJ~ cooled floor 

These results record the temperature stratification 
in the pool when heat was applied uniformly to the 
central column for the full height of sodium. Tests 
were made at four sodium levels and three input heat 
fluxes per height variant over the range 10-22 kW m -2. 
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Fig. 2. Pool section showing relative positions of heaters and thermocouples. 
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The top of the pool was adiabatic to a free surface and 
the outer wall also adiabatic. The floor was cooled. 

Table 1 summarizes the depth of sodium heated on 
the inner central column against an aspect ratio 
defined as the heated wall area divided by the cooled 
floor plate area. 

The results are shown on Figs. 3 and 4, and are 
presented in dimensionless format to show the bulk 
temperature profile from the floor to the free surface. 
Actual temperatures ranged from 280°C at the floor 
to 390°C at the top of the sodium. 

Table 1. 

Depth of 
Number of sodium 
submerged equal to the 
vertical wall heated wall 
heaters height (ram) 

Aspect ratio 
(heated wall area) 
(cooled floor area) 

4 360 0.30 
6 550 0.46 
8 775 0.65 

10 940 0.79 
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Fig. 3. Normalized pool temperature for uniform wall heating (plot 1). 

The  d imens ion less  p a r a m e t e r s  are : 
D imens ion le s s  he ight  (abscissa)  

Z 

H" 

Dimens ion le s s  t e m p e r a t u r e  (ord ina te)  

T--To 
ei ther  (Fig. 3) (H) - 

T . -  L 

or  for  an a l ternat ive  plot  (Fig. 4) 

(I)  

(2) 

T* - kA(T To) (3) 
QH 

Figure  3 also includes  some  o f  the  mercu ry  rig da ta  
ob t a i ned  f rom the  au tho r s  o f  the  w o r k  on a rec- 
t angu la r  mercu ry  filled enc losure  [2]. The  size o f  tha t  
enc losure  had  a hea ted  side wall 0.28 x 0.30 m and  a 
cooled  f loor  0.6 x 0.28 m. 

The  exper imenta l  obse rva t ions  were  : 

(1) T e m p e r a t u r e s  across  ho r i zon ta l  p lanes  in the 
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Fig. 4. Normalized pool temperature for uniform wall heating (plot 2). 
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vessel were constant. This confirmed the temperature 
stratification and a one-dimensional temperature pro- 
file through the bulk sodium from the top of the 
enclosure to the floor. 
(2) The results covered aspect ratios ranging from 
0.3 to 0.8 and showed no sensitivity to this aspect 
parameter. 
(3) Within this aspect ratio range were the conditions 
represented by the mercury experiments [2] (i.e. aspect 
ratio = 0.5). These agreed well with the sodium 
results. Thus liquid metals with Prandtl numbers of 
0.005 for sodium and 0.025 for mercury showed good 
agreement. 
(4) The normalized temperature profile was inde- 
pendent of applied power ( for the range tested). 
(5) The profile, which is presented in Fig. 3, could 
best be represented by the following curve obtained 
by applying multiple regression analysis to all the 
experimental results. 

(H) = -0.01 + 1.96z*-0.93(z*) 2. (4a) 

Ignoring the intercept coefficient which is clearly an 
error, and rounding-off the coefficients to satisfy the 
boundary conditions suggests that the profile may be 
expressed by a quadratic which also provides a good 
fit (also shown in Fig. 3) 

(H) = 2z* - (z*) 2 . (4b) 

Figure 4 shows the results from the sodium data by 
plotting dimensionless height [equation (1)] against 
temperature [equation (3)]. 

The observations are similar to those drawn above, 
with the dimensionless temperature profile being 
expressed by a best fit quadratic curve as follows : 

T* = -0.006 x 1.019(z*)-0.495(z*) 2. (5a) 

When the coefficients are rounded to whole num- 
bers the following is obtained : 

T* = z*--½(z*) 2. (5b) 

3.2. Uniform wall heatin 9 and a heated roof 

Further experiments were also made using the 
additional variant of roof heating, as well as heat 
applied to the central column. To achieve this the 
sodium level was raised to cover the roof coil. 

Figures 5 and 6 show the dimensionless temperature 
profiles when heat was applied either completely at 
the roof or uniformly to the central column. Two 
further tests show intermediate positions where a com- 
bination of both were used (i.e. 46 and 9% roof heat- 
ing). All heat was removed at the floor. The rounded- 
off curves derived in the previous section for uniform 
wall heat only, were also included on Figs. 5 and 6. 

The straight line on both figures represented the 
linear conduction of heat from the roof to the floor 
without any wall heating. Such tests are typical of 
those used to calibrate the floor plate as a heat flux 
meter. 

The dimensionless format shown in Fig. 5 is a con- 
ventional way of presenting the experimental results 
and useful in comparing different heat patterns. How- 
ever the presentation of Fig. 6 appears to be more 
informative in explaining the heat transfer mech- 
anisms taking place in the enclosed pool. It shows 
the Fourier equation for linear conduction (i.e. the 
straight line) as a basis for comparison at one extreme. 
The other extreme is given by uniform sidewall heating 
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Fig. 5. Normalized pool temperature for uniform wall heating and/or a heated roof (plot 1). 
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Fig. 6. Normalized pool temperature for uniform wall heating and/or a heated roof (plot 2). 

only (i.e. initial convect ion only) with intermediate  
posi t ions showing a combina t ion  of  these two mech- 
anisms. 

The fur ther  interest ing observat ions  noted were : 

• all the plots on  Fig. 6 tended to the same gradient  
as the l inear conduct ion  tests at  the floor, con- 
firming tha t  conduc t ion  only was the mechanism 
for heat  t ransfer  out  of  the pool  irrespective of  
the heat ing pa t te rn  ; 

• stirring of  the pool  by the sidewall induced natura l  

convect ion currents  halved the tempera ture  
potent ia l  needed to t ransfer  the same quant i ty  of  
heat  as was necessary for conduc t ion  from the 
roof  bounda ry  alone (Fig. 6). 

Hence, some significance can now be placed on  the 
terms in equat ion  (5b). The first term appears  to define 
the conduc t ion  down the pool  only, whereas the 
second term on the r ight  hand  side identified as 
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Fig. 7. Normalized temperature profile for nonuniform vs uniform wall heating. 
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probably accounts for the convection induced by the 
sidewall. At the base when z* is small the influence of 
this term is negligible, but because of the square 
function its influence increases markedly until it domi- 
nates at the top of the natural convection region. Here 
the parameter z/H tends to a value of one and the net 
temperature gradient given by equation (5) is halved. 
This is consistent with the empirical observations [2] 
when it was concluded that natural convection was 
doubling the heat transfer rate from the fluid to the 
base for the same overall temperature potential. 

3.3. Local uniform wall heating 
It was possible, because of the size of the test facility, 

to apply uniform wall heating to a local section and 
still obtain good resolution of the bulk sodium tem- 
perature profile. Thus, heat was applied uniformly to 
a block of four adjacent heater zones and only the 
height of this block above the floor altered between 
each test. 

No graphical illustrations of the tests are given, 
since it was found that the same one-dimensional 
shape for the temperature profile was obtained, pro- 
vided the results were normalized to specific 
parameters. These parameters could be isolated within 
the geometry of the test facility and are identified in 
the results described as follows : 

(1) Curvature in the temperature field occurred in the 
sodium only at heights directly adjacent to the applied 
heat on the wall. Thus the one-dimensional tem- 
perature profile was divided into three regions. 

(a) A zone beneath the heated wall with a linear 
straight line gradient indicative of conduction and as 
observed only in the heated roof tests. 

(b) A curvature zone adjacent to the heated wall 
of the shape seen in Figs. 3 and 4, provided the data 
was normalized to the parameters of the temperatures 
at the top and bottom of the heated region (i.e. Th 
and T~) and H taken as the heated height. 

(c) An isothermal zone above the heated wall and 
consistent with the top adiabatic boundary for the 
pool. 
(2) If the heated block was positioned higher in the 
pool then the conduction zone was thicker and the 
top temperature correspondingly higher. Applied heat 
and sink temperatures were unchanged. 
(3) Significantly there appeared to be little or no heat- 
ing of the pool by the thermal convection current once 
it rose above the heated wall. 
(4) The change in the top of the heated boundary 
from a free surface to an interface within the sodium 
did not appear to alter the shape of the bulk fluid 
temperature field adjacent to the uniformly heated 
wall. 

These observations indicated firstly, that curvature 
of the temperature field was confined to the level at 
which power was applied on the sidewall. Such an 
observation is consistent with the generation of 

internal heat in the heated band, and this will be 
developed further in Section 4. 

Secondly, that a height parameter had been isolated 
for this generation zone which corresponded to the 
height of the heated wall. 

3.4. Tests with nonuniform wall heating 
Two further test types were undertaken to give an 

indication of the changes in the heat transfer mech- 
anisms as one moved away from the uniformly heated 
wall condition to more complicated and possibly more 
realistic problems. 

3.4.1. In the first test group the heat pattern was 
maintained with a uniform background wall heating 
(as previously), but with an additional variant of extra 
uniform heating on a two heater block which was six 
times the background heat flux (i.e. a local hot band). 
This local hot band was positioned at different heights 
between tests, with the total heat transferring through 
the pool to the floor which was kept at a constant sink 
temperature. 

Again no graphical illustrations of the results are 
included, since they are very specifically related to 
the heat pattern chosen, but one further interesting 
observation was confirmed : 

Additional steepening of the one-dimensional tem- 
perature field occurred only adjacent to the height 
that corresponded to the extra heated area of the wall. 
This clearly related extra power on the sidewall with 
the additional temperature difference in the bulk 
sodium, i.e. further confirmation of the appearance of 
energy generation in the bulk fluid. 

3.4.2. The second group of tests were made with a 
heat pattern that concentrated the power input 
towards the base of the pool in an attempt to achieve 
results similar to those observed in the water tests 
with an isothermal wall [1]. The temperature profiles 
obtained are again specific to the heat pattern applied. 
The choice was arbitrary, but in this case the heat was 
distributed over six heaters as 

Top heater 

% 

6 5 
5 10 
4 15 
3 20 
2 25 
1 25 

100 

The dimensionless profile is shown on Fig. 7 and 
compared with that for uniform wall heating. The 
length dimension is normalized to the heated height. 

The concentration of heat towards the floor pro- 
duced a steeper temperature gradient again in 
response to the power distribution on the wall. By 
choosing alternative heat patterns with even more wall 
heating towards the base, then probably it would be 
possible to simulate the temperature profiles observed 
in water experiments with an isothermal wall [1]. This 
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was not possible in this rig because of the risk of 
exceeding the safe stress limit. 

3.5. Boundary layer observations 
Observations from the thermocouple combs adjac- 

ent to the hot wall for a sodium depth of 940 ram, 
showed that the temperature field was very thin and 
that the boundary layer difference between the hot 
wall and the bulk sodium was small. 

At the lower position (height 236 ram), this tem- 
perature difference was less than 0.5 % of that between 
the top and floor of the pool. The observed thickness 
as measured by the thermocouple combs described in 
Section 2 was less than 5 mm. At the higher position 
of three-quarters height (700 mm) the wall/pool 
difference locally was less than 2% and the thickness 
about 12 mm. These are considerably thinner than 
predicted by previous correlations [3]. The reason for 
this difference is not known, but it could be a conse- 
quence of the stratification of the sodium in the enclos- 
ure which prevents the boundary layer fully develop- 
ing. As the hot sodium rises it moves into equally 
hot fluid and the buoyancy driving forces may be 
destroyed on the outer edge of the velocity boundary 
layer. 

These results confirmed the assumptions used in 
developing a previous analytical solution [2], and 
which were important in justifying the one-dimen- 
sional theory, i.e. 

• that it is reasonable to assume that the wall tem- 
perature excess above the bulk temperature is 
small ; 

• that the thermal boundary layer is thin. 

4. DISCUSSION OF RESULTS AND ANALYSIS 

4.1. Empirical formulae 
The empirical equations (4) and (5), presented earl- 

ier for constant wall heating, are shown both as the 
best fit regression lines of an assumed quadratic func- 
tion and also rounded-off to whole numbers to satisfy 
expected boundary conditions at the top boundary 
(i.e. adiabatic) and at the floor (i.e. conduction only). 

Any deviation of the top gradient from zero would 
be attributed to the excess temperature in the thermal 
circulation up the heated wall. This excess could re- 
present heat spread out across the free surface and 
could give an apparent top heating similar to the tests 
when the roof was deliberately heated. If one evalu- 
ated the gradient at the top using the best fit constants 
for equation (4a) it would give a value of 0.1 or 5% 
of the floor gradient and for equation (5a) 2.8% of 
the floor gradient. Hence, there is some contribution 
from the convection mechanism against the side wall 
towards producing top heating. 

However, it appears that in a liquid metal its influ- 
ence on the top gradient is small and for most engin- 
eering applications this could initially be ignored. The 
experimental observations confirm this. 

4.2. Analytical ]brmulae 
The temperature profile given by equation (5b) is a 

specific solution of the one-dimensional steady-state 
heat conduction equation involving constant energy 
generation in the medium [4], and the solution is 
demonstrated in the Appendix. 

This indicates that the temperature profile in the 
liquid metal pool is in response to constant energy 
generation from the downward convection currents in 
the sodium, which mirror the constant heat flux 
applied to the vertical wall and the upward convection 
current in the boundary layer. 

This agreement of the analytical solution with the 
empirically derived formula leads to further under- 
standing of the distribution of the conduction and 
convection heat transfer modes in the bulk sodium 
and to the simplified analysis model presented in ref 
[2]. That model suggested a relatively thin boundary 
layer flow travelling up the heated wall with a balanced 
return flow spread across the plenum width. It appears 
from these tests that as the downward convective cur- 
rent re-entrains into the sidewall boundary layer, the 
termination of the flow in the bulk fluid provides the 
energy generation and the release of heat from the 
convection mode which then proceeds down the 
enclosure in a conduction mode. The distribution of 
heat by the two mechanisms is closely linked and 
further analytical formulae may be derived for this 
constant heated wall condition to explain convection 
heat distribution flows. 

4.2.1. Conduction heat. The quantity of heat in the 
conduction mode at any height is defined by the 
differential of equation (5), i.e. 

Qc(z*) (dT*) 
- - l - z * .  ( 6 )  

Q, (dz*) 

This varies from 100% at the floor, to zero at the 
top in a simple linear relationship. 

4.2.2. Convection heat. The quantity of heat in the 
convection mode at any height is the converse being 
100% at the top and reducing to zero at the floor, i.e. 

-Q--<~(---*~} : z*. (7) 
Q, 

The total heat is constant at any height and is the 
sum of the local heat moving in either the conduction 
or convection modes. Since the convection heat is 
directly proportional with height, it follows that this 
is also the cumulative heat applied at a constant rate 
to the wall up to the same height. 

4.2.3. Convection .flows. The local ratio of heat in 
each heat transfer mode at any height defines a local 
Peclet no. 

Qcv(Z*) -* _ P ' C  v ' U ( z * ) ' A ' d T  
Pe(z*) - 

Qo(z*) 1 - z *  kA .dT/H 

(8) 

From this relationship it is possible to quantify the 
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Fig. 8. Normalized mass flow in the bulk fluid. 
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minimum convection flows circulating in the enclos- 
ure ; since mass flow at any height is given by 

m'(z*) = p" U(z*)" A. (9) 

Then rearranging and introducing the thermal 
diffusivity yields expressions for the local mass flow 
in the bulk fluid down the enclosure 

= p ' A ~ {  z* 
m'(z*) H \1 - z *  ]" (10) 

By virtue of continuity, this also defines the upward 
mass flow in the boundary layer adjacent to the heated 
surfaces. 

Normalization of this equation to the value at mid- 
height simplifies this expression to give 

normalized mass flow 

m'(z*) z* 
m'(z* = 0.5) 1 --z* ( l l )  

Equation (11) has been solved and the result pre- 
sented on Fig. 8. This indicates the relative magnitude 
of the convection currents in the bulk fluid with con- 
siderable recirculation at the top of the enclosure, but 
only drift flow downwards for much of the height. 
Since the above equation tends to infinity at z* = 1, 
the influence of the boundary layer must be taken 
into account and hence, the data is only plotted upto 
-* = 0.975 and thus allows for the slight top heating 
effect noted in the empirical equations as discussed 
previously. 

4.3. Analysis of a heated roof with wall heating 
The previous analysis leads to an explanation of the 

roof heated tests. Here heat was introduced at the roof 

boundary producing an initial conduction gradient. 
Thus equation (6) could be re-written as 

Or ( d  T*~, 
Qr + Qw = \d~  gz* ] (12) 

where conduction at the top boundary has been 
replaced by the in-flow of roof heat (Qr) and the total 
heat (Qt) by the sum of the roof heat (Qr) and uniform 
wall heat (Qw) inducing the convection. This defines 
the temperature gradient boundary condition at the 
roof level. 

Roof heating in its various degrees provides a whole 
range of intermediate positions along the curve 
defined by equation (5b) and indicated by Fig. 3. This 
may require a tighter definition of H for the uniformly 
heated wall, which one has chosen to define as H0 or 
reference height. This reference height is the height 
necessary to obtain the full development of the tem- 
perature profile curve as far as the true adiabatic 
boundary. Thus, for the roof heated tests (where only 
a limited development of the curve is seen up to a 
height/4'  representing the heated wall height to the 
roof boundary condition), a relationship between H0 
and/4" is required. This relationship can be derived 
by equating equations (6) and (12) and solving when 
z = H' so that z* = H'/Ho. Thus 

Qw H' = - - ' H 0  (13) 
(ar+Qw) 

and the temperature field would be defined by equa- 
tion (5b) solved between z* = 0 to z* = H'/Ho, where 
H' < H0 and Q = Qt = Qr+Qw. 

The experimental data on Fig. 6 was plotted for 
z/H' in the range 0 to 1. To obtain the equation of the 
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line based on normal iza t ion  to the heated wall height 
requires subst i tut ion of  Ho into equat ion (5b) using 
equat ion (13). Thus, the equa t ion  for the intermediate 
lines on Fig. 6 can be explained by 

( T -  T~) H,  Qt  = , (14) 

where R is the ratio of  the wall heat to the total  heat 

Q~ 
R - O r + Q , i  (15) 

5. CONCLUSIONS 

Empirical  and analytical formulae have been 
developed which can be used to explain natural  con- 
vection in a liquid metal enclosure with floor cooling 
and  heated walls or roof  with sufficient accuracy for 
engineering purposes.  

Par t icular  emphasis  has been placed on the uniform 
heated wall case and on defining the tempera ture  pro- 
file in the bulk fluid. This is seen to be one-dimensional  
and is a solution of  the steady-state conduct ion  equa- 
t ion involving cons tant  energy generat ion in the 
medium, Thus  the tempera ture  profile is a conduct ion  
gradient,  with constant  energy generat ion produced 
by the convect ion circulation releasing heat  to the 
conduct ion  mode. 

Cons tan t  heat  J tux  

The main  equat ion which gives a good predict ion 
of  the tempera ture  profile is 

where 

and  

T* = 2 * - I , ( z * )  :, (5b) 

k A  
T* = ~" H , (T - -  T~) 

" H ( !  " 

This is similar to the Fourier  equat ion  tbr  linear 
conduct ion,  but  with an addi t ional  funct ion on the 
r ight -hand side which accounts  for the na tura l  con- 
vection induced by the uniformly heated sidewall. 

Isolat ion of  the heat  dis t r ibut ion into the con- 
vection and  conduct ion  modes has been made and 
this enables the convect ion mass flow induced in the 
enclosure to be quantified and  given by equat ion  (10) 

m' ( z* )  = H,, k l - z * /  (10) 

and can be solved for values of  z* < 1. 

Boundary  laver ~[7ect 

The influence of  the boundary  layer is discussed 
with experimental  observat ion of  the extra tern- 

perature  in this region compared  with the local bulk 
fluid. In sodium this effect is small and  represents 
2.8% of  the total  applied wall heat,  which gives the 
appearance  of  a slightly heated top boundary  
condit ion.  

Other  heat  variants  

Equat ion (5b) can be applied to cases involving a 
heated roof  as well as a uniformly heated sidewall. 
The text discusses fur ther  the appl icat ion of  the tbr- 
mulae to this problem and  reports the results of  tests 
involving nonun i fo rm wall heating. 
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APPENDIX A 

Solution of the one-dimensional steady-state conduction 
equation for the natural convection cell involving constant 
energy generation in the medium. 

Assumptions 

k(W m ~ K ~) = constant thermal conductivity 
.~, (Wm ~ - constant energy generation in medium. 

Hence 

d e T ~q~ 

ET~ = 7 .  • 

Boundary conditions 

dT 
(1) z = H" d~z z = 0 

(2) z = 0, T -  Tj, assume h = ,, i.e. T(z = O) = T,  

I st integration 

dT  qoz 
dz = ~k + eL, where C~ = ~ l¥om the first boundary 

condition 

2nd integration 

T = - : k  + + C,, C2 = T, from the second boundary 

condition 
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Q and 
Q = g o A H  " go = ~-H 

~ubstitute 9o into solution of  2nd integration, hence 

Ak t tH) 2\Hi / 

i .e. 

k A  T T z l [ z )  2 

~( - ~ )  = ~ - 7 \~) 

T* = z*-½(z*) 2 [QEDequation (5b)]. 


